A Semiempirical Model for Predicting Biodegradation Profiles of Individual Polymers in Starch–Poly- (b-hydroxybutyrate-co-b-hydroxyvalerate) Bioplastic

نویسندگان

  • S. H. GORDON
  • S. H. IMAM
  • R. L. SHOGREN
  • N. S. GOVIND
  • R. V. GREENE
چکیده

Plastic prepared from formulations of cornstarch and poly(b-hydroxybutyrate-co-b-hydroxyvalerate) (PHBV) biodegraded in tropical coastal waters. Biodegradation was monitored for 1 year. Starch—PHBV bioplastic appeared to lose weight in two overlapping phases until both biopolymers were entirely consumed. To examine the underlying degradation of starch and PHBV from biphasic weight-loss profiles, a semiempirical mathematical model was developed from which degradation profiles and lifetimes of the individual biopolymers could be predicted. The model predicted that starch and PHBV in the bioplastic had half-lives of 19 days and 158 days, respectively. Computed profiles also predicted that the starch in the composite would be completely degraded in 174 days, while residual PHBV would persist in the marine environment for 1107 days. The model further revealed that, for a 30% starch : 70% PHBV composite, PHBV degradation was delayed 46 days until more than 65% of the starch was consumed. This suggested that PHBV degradation was metabolically repressed by glucose derived from starch. Glucose repression of microbial PHBV degradation was substantiated in 91 of 100 environmental isolates. The validity of the elaborated model was proven when its revelations and predictions were later confirmed by chemical analysis of residual bioplastic samples. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbial degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in soils.

The microbial degradation of tensile test pieces made of poly(3-hydroxybutyrate) [P(3HB)] or a copolymer of 90% 3-hydroxybutyric acid and 10% 3-hydroxyvaleric acid was studied in soils incubated at a constant temperature of 15, 28, or 40 degrees C for up to 200 days. In addition, hydrolytic degradation in sterile buffer at temperatures ranging from 4 to 55 degrees C was monitored for 98 days. D...

متن کامل

Multiple propionyl coenzyme A-supplying pathways for production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Haloferax mediterranei.

Haloferax mediterranei is able to accumulate the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with more than 10 mol% 3-hydroxyvalerate (3HV) from unrelated carbon sources. However, the pathways that produce propionyl coenzyme A (propionyl-CoA), an important precursor of 3HV monomer, have not yet been determined. Bioinformatic analysis of H. mediterranei genome indicated that t...

متن کامل

Genetic and biochemical characterization of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthase in Haloferax mediterranei.

The haloarchaeon Haloferax mediterranei has shown promise for the economical production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a desirable bioplastic. However, little is known at present about the genes involved in PHBV synthesis in the domain Archaea. In this study, we cloned the gene cluster (phaEC(Hme)) encoding a polyhydroxyalkanoate (PHA) synthase in H. mediterranei CGMCC ...

متن کامل

Biosynthesis and biodegradation of 3-hydroxypropionate-containing polyesters.

3-Hydroxypropionate (3HP) is an important compound in the chemical industry, and the polymerized 3HP can be used as a bioplastic. In this review, we focus on polyesters consisting of 3HP monomers, including the homopolyester poly(3-hydroxypropionate) and copolyesters poly(3-hydroxybutyrate-co-3-hydroxypropionate), poly(3-hydroxypropionate-co-3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyo...

متن کامل

Pretreatment and Anaerobic Co-digestion of Selected PHB and PLA Bioplastics

Conventional petroleum-derived plastics are recalcitrant to biodegradation and can be problematic as they accumulate in the environment. In contrast, it may be possible to add novel, biodegradable bioplastics to anaerobic digesters at municipal water resource recovery facilities along with primary sludge to produce more biomethane. In this study, thermal and chemical bioplastic pretreatments we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000